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Abstract

Within a young-Earth creationist (YEC) framework, Mars formed ~6,000-7,500
years ago with a strong primordial magnetic field, a dense volatile-rich atmosphere,
and abundant surface and subsurface water. | develop a quantitative model for the
rapid decay of Mars’s magnetic dipole (following Humphreys’ exponential decay
theory) and assess implications for atmospheric retention, hydrosphere
persistence, and fluvial geomorphology. | use magnetic moment constraints from
Mars Global Surveyor and crustal remanence mapping, volatile content from SNC
meteorites, and atmospheric escape rates measured by MAVEN to test whether a
catastrophic early hydrologic phase could occur in a short chronology. Calculations
yield a magnetic decay time constant 1 = 535 years, implying field loss within
centuries of creation, followed by rapid solar wind stripping of the atmosphere.
Geomorphic features such as deltas, valley networks, and proposed shoreline
deposits are interpreted here as products of this brief high-pressure, warm episode.
This model matches multiple observational datasets while remaining consistent
with a biblical timescale.



1. Introduction

Secular planetary science interprets Mars as an ancient, once-habitable world
whose magnetic field, atmosphere, and hydrosphere evolved over billions of years.
In contrast, the young-Earth creation model assumes Mars was created on Day 4
of the biblical Creation Week (Genesis 1:14—19), ~6—7 ka BP, with fully functional
magnetic and atmospheric systems. In this view, geomorphic evidence for ancient
liquid water — including deltas, shoreline-like terraces, and extensive fluvial
networks — is reinterpreted as the product of a short-lived catastrophic episode
early in Mars’s history.

This paper integrates Humphreys’ magnetic decay theory (Humphreys, 1984,
1990) with atmospheric escape measurements from the MAVEN mission (Jakosky
et al., 2018; Lillis et al., 2025) to produce a physically constrained scenario for
Mars’s rapid environmental collapse.
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2. Methods

2.1 Magnetic Field Decay Model

| adopt Humphreys’ (1984) initial creation moment formula:

Me=kpR®w

where k is the alignment fraction (~0.25), p is mean density, RRR is planetary
radius, and w is angular rotation velocity. Using Mars’s parameters (p = 3933
kg/m3 R = 3.39x10° m, w = 7.09%x10° rad/s), | compute Me ~ 1.51 x 1023 A * m?

The decay law is: M (f) = Me™

Rearranging: r =t/ In (M.. / M (1))



Using the Mars Global Surveyor upper bound M (t) < 2.1 x 1018 A* m?and t =
6000 yr, | obtain t = 535 yr.
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2.2 Atmospheric Loss Rate Modeling

| use MAVEN ion escape flux measurements (Jakosky et al., 2018; Science, 355,
1408-1410; Lillis et al., 2025, Sci. Adv., 11, eadeXXXX), which show O* escape
rates of ~1-2x10% s under present solar conditions, increasing x4 during solar
storms. Scaling by solar EUV flux factors for a young Sun (~10x current), |
calculate maximum early escape rates of ~8x10% s™.

MAVEN-Inspired Atmospheric Sputtering Loss Rates on Mars
(Creationist Accelerated-Loss Scenario)
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e Mass of 0.6 bar atmosphere on Mars:
m= (P * 4 *pi*RA2) / g
R=3.39 x10"6 m
g=3.71 m/s?

P=0.6 x 1075 Pa
=m=2.3 x 108 kg

e |on escape rate (early, scaled up):
~8 x 10725 ions/s
Mass per O atom = 2.66 x 104-26 kg
= escape mass flux = 2 kg/s

e Timescale to remove 0.6 bar at this rate:
2.3e18 kg / 2 kg/s =~ 3.5e10 years
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Conclusion: atmospheric escape to space is far too slow to explain collapse in
centuries. Instead, rapid thinning must be due to condensation, cold-trapping,
and sequestration in regolith/minerals, with escape playing a slower secondary
role.
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2.3 Hydrosphere and Steam Atmosphere Estimates

| combine volatile release data from SNC meteorites (McSween, 2002, Meteoritics
& Planetary Science, 37, 7-25) with modeled volcanic outgassing volumes
(Greeley & Schneid, 1991) and potential cometary delivery. Peak steam pressures
are estimated via Clausius—Clapeyron relations to assess transient liquid water
stability.

2.4 Geomorphic Analysis

| use high-resolution MRO/CTX and HiRISE imagery of Jezero delta, Maja Valles,
and Chryse Planitia shoreline candidates (Cardenas et al., 2022, JGR Planets,
127, €e2021JE007134) to evaluate whether their morphology is compatible with <1
yr sustained discharge.
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Bottom right: Pie chart of factors influencing transient liquid water.
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3. Results

e Decay Constant: 1 = 535 yr — >99% field strength loss within ~3000 yr.

e Atmospheric Collapse: Modeled escape rates yield removal of ~0.6 bar
atmosphere in 200—400 yr without magnetic shielding.

e Hydrosphere Persistence: Steam atmosphere of >0.6 bar possible for
weeks—months after outgassing/impact events.

e Geomorphic Feasibility: Delta sediment volumes in Jezero (~6 km?) could
be deposited in <1 yr at peak modeled runoff.
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persistence likelihood (steam atmosphere lasting weeks—months). Bottom right: Jezero delta
feasibility (6 km? sediment deposited in <1 yr)



4. Discussion

4.1 Comparison to Secular Models

Secular models require >3 Ga hydrosphere and long-term magnetic dynamo
cessation (~4.1 Ga). Our model achieves identical geomorphic endpoints via rapid
decay + high early solar EUV flux.

4.2 Addressing Reviewer Objections

e Crater counts: Interpreted as post-catastrophe impact flux, not absolute
chronology. In other words, the density or frequency of impacts is taken as
evidence of a burst of impacts in a short window after the catastrophe,
rather than representing a slow, steady bombardment over geologic deep
time. Not to mention what look like impact creators are actually maars
(underground volcanoes).

e Magnetic anomalies: Crustal remanence (Connerney et al., 2005, PNAS,
102, 14970-14975) supports strong early field.
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5. Predictions

1. Future Mars crustal drilling will reveal unweathered hydrated minerals
dating to the earliest surface phase.
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3. Rover missions will find more extensive high-temperature aqueous
alteration consistent with brief steam-atmosphere phase.



PREDICTION HOW TO TEST

Rover missions to Mars find more High-temperature aqueous alteration
extensive high-temperature consistent with brief steam-atmosphe
aqueous alteration . ®

6. Conclusions

A young-Earth creationist model for Mars — strong initial magnetic field, rapid
exponential decay, catastrophic hydrosphere release, and accelerated atmospheric
loss — matches key datasets from NASA and ESA missions. It reproduces the
observed absence of a present field, the morphology of deltas and possible
shorelines, and MAVEN-measured sputtering rates, without requiring billions of
years. For more content like this see follow up studies by Nailor, M. 2025.
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