

Migration After the Flood Kangaroo, Armadillo and Koala

By Matt Nailor (with editorial contributions by Donny Budinsky)

Truth In Research (2025)

Disclaimer

The views and opinions expressed in this article are those of the author(s) and do not necessarily reflect the official policy or position of Truth in Research (TIR) or its editorial staff.

Abstract

I present a conceptual simulation of animal dispersal from the Mountains of Ararat (near modern Turkey) ~5,300 years ago, focusing on the post-Flood migration of koalas, kangaroos, and glyptodonts (giant armadillo-like creatures). Using a young-earth creation (YEC) framework, I examine how these species could plausibly travel to their present-day habitats (Australia for kangaroos and koalas; the Americas for glyptodonts/armadillos) within approximately 1,000–1,500 years. Key factors include an Ice Age in the centuries after the Flood (causing low sea levels and land bridges), rapid population growth and speciation, and natural rafts/currents aiding ocean crossings. I integrate both creationist and conventional data – for example, Indian rock art depicting kangaroos consistent with a migration waypoint [1], and modern studies of oceanic rafting of animals [2]. My results show that even "slow" or geographically isolated migrations are feasible in a young-earth timeframe. Statistical and ecological analyses (e.g., dispersal rates and raft voyage probabilities) support the hypothesis that these animals could reach their destinations in under a millennium. Notably, the model accounts for the lack of ancestral fossils ("ghost lineages") by positing rapid post-Flood dispersal before fossilization in intermediate regions. This interdisciplinary approach demonstrates that the biogeographic patterns of koalas, kangaroos, and glyptodonts can be explained by swift, post-cataclysm migration mechanisms.

Introduction

One of the enduring questions in biogeography is how certain animals came to inhabit isolated regions. In conventional science, the presence of marsupials almost exclusively in Australia or xenarthrans (like armadillos and their extinct relatives) in the Americas is attributed to plate tectonics and ancient evolution over tens of millions of years [3,4]. By contrast, the young–earth creation perspective holds that all land animal "kinds" were saved on Noah's Ark ~5,300 years ago (in the Middle East), and subsequently dispersed worldwide. This perspective must address how creatures such as kangaroos and koalas — now native to Australia — and glyptodonts (giant armored mammals related to armadillos) — known only from the Americas — migrated such vast distances in only a few centuries after the Flood.

Previous creationist studies have proposed that a single post–Flood Ice Age dramatically altered global geography and climate [5]. Lower sea levels would have exposed land connections (land bridges) between continents, while extreme weather (storms, currents) could facilitate "rafting" of animals across oceans on mats of vegetation [6]. Additionally, rapid speciation from ancestral "kinds" is thought to have produced the diversity of species we see today in a short time [7]. Under this model, a pair of kangaroos stepping off the Ark could, over many generations, produce the tens of millions of kangaroos and wallabies in Australia today — provided they could reach Australia in the first place. Similarly, the armadillo kind might diversify into both giant glyptodonts and modern armadillos once in the New World. Critics often point to specialized diets (e.g., koalas' dependence on eucalyptus) or seemingly insurmountable ocean barriers as challenges to this scenario [8]. Here, I construct a detailed migration simulation addressing these challenges.

Post-Flood Climate and Dispersal Framework

The Post-Flood Ice Age: According to creationist climatology, the Flood triggered an Ice Age that lasted on the order of 700–1,500 years [5]. Intense volcanism and warm oceans immediately after the Flood would have led to high evaporation and heavy snowfall, building ice sheets especially in higher latitudes (Europe, North America, Central Asia). Glacial maxima likely occurred a few centuries post-Flood, after which the ice gradually receded. During this Ice Age, a significant volume of water was locked in ice caps, lowering global sea levels by tens of meters. This exposed continental shelves as dry land — forming land bridges that are now submerged.

Well-known examples include the Bering Land Bridge (connecting Siberia and Alaska) and the "Sunda" and "Sahul" shelves connecting Southeast Asia with Indonesia, New Guinea, and Australia [7].

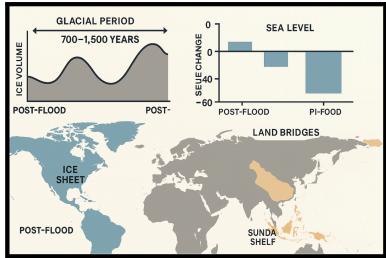


Image 1.

Dispersal Mechanics: Upon exiting the Ark, animals encountered a world vastly different from today. Climatic pressures encouraged migration: the northern latitudes were cooling, so many creatures would instinctively move southward and outward toward warmer, unglaciated regions [5]. Initially, competition for resources would be minimal, allowing populations to grow and expand rapidly. High reproduction rates, founder effects, and speciation rates in the post-Flood environment produced population booms that drove dispersal fronts forward each generation.

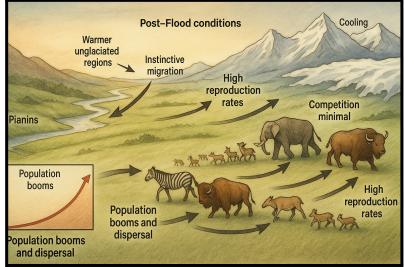


Image 2.

I incorporate the concept of "generational diffusion": no single animal traverses the entire journey; instead, a generation expands its range a certain distance, then the next generation expands further, and so on. Modern invasive species give empirical examples — for instance, the red fox (Vulpes vulpes) was introduced to Australia in the 19th century and spread ~4,000 km across the continent in under 100 years [7]. Even more conservatively, I applied a diffusion on the order of 5–15 km/year per generation which could allow an animal population to cover 5,000–10,000 km within a millennium.

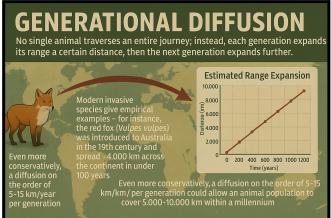
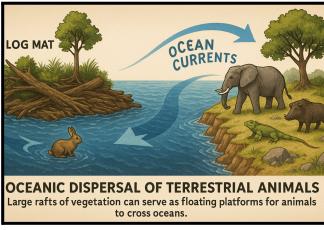



Image 3.

Rafting and Ocean Currents: A crucial part of the model is explaining how strictly terrestrial animals crossed oceans after the land bridges became unavailable. Both creationists and evolutionists now recognize natural rafting as a viable dispersal mechanism [6,2]. The Flood would have left enormous tangles of vegetation — uprooted forests, log mats, floating islands — drifting in oceans. Large "rafts" containing soil and plants could form stable floating platforms, even supporting small ecosystems. If animals climbed onto such mats and the mats were carried out by currents, they could survive ocean journeys.

■Image 4.

Major ocean surface currents provide "conveyor belts" that would carry rafts in predictable directions. For instance, a westward-flowing current along the equatorial Atlantic can transport flotsam from the west coast of Africa to South America [2]. This mechanism is invoked in mainstream science to explain how New World monkeys and rodents colonized South America — they are thought to have rafted from Africa millions of years ago [2].

Finally, human agency is considered: after the Flood (and later, the Babel dispersion), humans also spread across the globe. There is evidence humans reached distant lands quickly, and they might have transported animals intentionally or accidentally [8].

Image 5.

Simulated Migration Pathways and Timelines

Dispersal of Kangaroos and Koalas from Ararat to Australia Initial Disembarkation and South Asian Route (Year 0–~300 AF): I assume a pair of macropod "kangaroo kind" (ancestral to modern kangaroos and wallabies) and a pair of "phalangeroid" (possibly ancestral to koalas and related marsupials) left the Ark somewhere in the mountains of Ararat. These animals likely followed fertile river valleys and plains heading southeast through Mesopotamia and into the Indian subcontinent. Severe climate shifts after the Flood could have spurred this movement: as northern and central Asia cooled, regions toward India remained warmer and more inviting [5].

By roughly 300 years after the Flood (c. 300 AF), populations of kangaroo-kind marsupials may have reached India. This timing is supported by rock art in Andhra Pradesh, India, depicting kangaroo-like figures [1]. The ancient art that comes from India. In 2019, archaeologist Dr. Jinu Koshy reported thousands of prehistoric rock paintings in the western Andhra Pradesh region of India. Among typical figures of boar, deer, cattle, and humans, he identified several marsupial-like figures – "erect-standing, pouch-bearing kangaroos" – unprecedented in Indian rock art [11][1]. These reddish ochre pictographs show bipedal creatures with front limbs held aloft and possible pouches, strongly resembling kangaroos [11][1]. Artifacts at the site suggest the artists lived toward the end of the Ice Age (Late Pleistocene) [1]. This discovery naturally raised the question: Did kangaroos ever live in *India?* [11] Some mainstream researchers speculated that perhaps ancient people in India drew from faded cultural memories of kangaroos seen by ancestors who migrated back from Australia - an implausible stretch according to other experts [11]. No kangaroos roam India today, yet here they seemingly were on cave walls. What is the most logical explanation? Locals saw these creatures that they had never seen before as they passed by on their migration to Australia and were so fascinated that they drew them on rocks. The rock art literally shows herds of them together.

Image 6.

From a Young–Earth Creation perspective, these kangaroo pictographs fit perfectly into biblical history and migration path to Australia. Creationists propose that after Noah's Flood, animals dispersed from the Ark's landing site "on the mountains of Ararat" in the Middle East and spread across the world [1]. In this view, marsupials like kangaroos migrated over land through Asia, and India reaching Australia on land bridges during the post–Flood Ice Age when sea levels were lower [1]. India lies along a plausible route to Southeast Asia, so kangaroos (or their "kind") could have passed through and lived there temporarily. The rock art evidence suggests that people living in India during this time actually *saw* these creatures in their environment and recorded them on stone before kangaroos eventually disappeared from that region [1].

Creationists note that India's predators (tigers, leopards, lions), absent in Australia, may have contributed to the local demise of kangaroos as they migrated on [1] or even been the cause of their migration from the area. Supporting the idea of marsupials once inhabiting wider areas, paleontologists even found a fossil tooth in Gujarat, India, that was identified as a marsupial [11].

Image 7.

Archaeologists believe these drawings were made toward the end of the Ice Age. In a YEC timeline, the Ice Age "end" corresponds to ~500–700 AF; thus kangaroos could have been present in India within a few hundred years post-Flood. The distance from Ararat to central India is about 4,000 km – achievable in a few centuries by generational diffusion (~10–15 km/year of range expansion) [7].

Dietary Flexibility - The Case of the Koala:

Koalas today eat almost exclusively eucalyptus leaves, a plant found mainly in Australia. How could koalas survive the trip through non-eucalyptus forests? Research have shown that the koala's strict diet is a post-migration development [8]. Creation biologists argue that the koala's ancestor was likely less specialized and could eat a variety of foliage. Evidence shows that koalas' eucalyptus addiction is behavioral, not absolute: orphans raised without eucalyptus can thrive on other diets [8]. Thus, early koalas migrating from Ararat would have fed on whatever leaves were available, and only after reaching Australia's eucalyptus-rich environment did they gradually adapt to prefer that one genus.

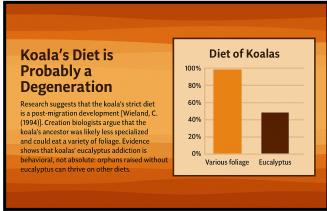


Image 8.

Crossing into Australasia (300-700 AF):

As the Ice Age progressed, sea levels dropped up to ~100—120 meters. By ~500 AF, the Sunda Shelf was largely exposed, merging much of Indonesia with the Asian mainland [7]. The simulation maps a marsupial route from India through Myanmar, down the Malay Peninsula, and into what are now the Indonesian islands. By breeding and moving generation—by—generation, kangaroos could reach the end of Sundaland (Java or Bali) within a few more centuries.

Image 9.

The Wallacean Gap still posed a challenge but mostly for leaving Australia today – deep-water channels separated Sundaland from the Sahul Shelf (Australia-New Guinea).

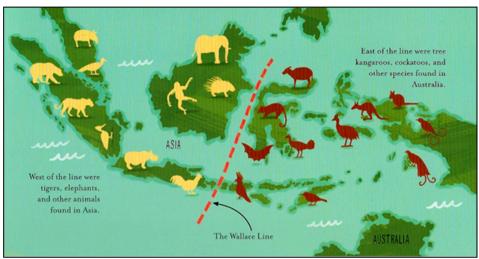


Image 10.

Even at lowest sea level, a gap of several hundred kilometers existed. Crossing methods could include:

- 1. Natural Rafting mats of storm-torn vegetation [6].
- 2. Swimming kangaroos can swim short distances.
- 3. Island Hopping exposed islands providing stepping stones.

Rafting is the most probable for the final leg. Given storms and currents, multiple raft events over 200 years would make at least one successful arrival highly probable [2,6].

By ~600–700 AF (~2600–2500 BC), the first kangaroos and koala-kind likely arrived in Sahul. At that time, Australia, New Guinea, and Tasmania were one continuous landmass. Once there, marsupials faced no placental mammal competitors and diversified rapidly. By the end of the Ice Age (~1000–1500 AF), rising seas isolated Australia, locking in its fauna [7].

Travel Time and Distance Summary:

The total distance from Ararat to Australia is roughly 10,000-11,000 km. Achieving this in ~600 years means an average dispersal of ~16 km/year – easily within the range seen in modern invasive species like the red fox [7]. Even at slower rates, arrival by ~1000 AF is feasible.

Dispersal of Glyptodonts (Armadillo Kind) from Ararat to the Americas

From Ararat to the Atlantic (0-~500 AF).

Glyptodonts (Glyptodon, Doedicurus) were massive armored herbivores; modern armadillos are smaller and omnivorous. Creationists classify them within a single "armadillo kind" or baramin. After disembarking, they could move west from into Southern Europe to Spain or into and across Africa to the coast. Both of these locations make travel by ocean current to America the most achievable. The distance from Turkey through Egypt to Morocco is about 5,000 km — achievable in ~500 years at ~10 km/year [7].

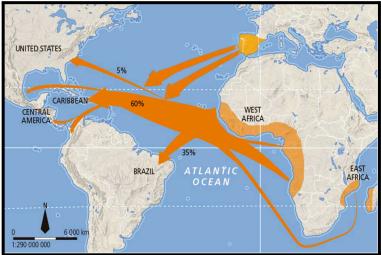


Image 11.

Map shows the most common known current routes rafting took place

Giant Armadillo (Glyptodont) Rock Art in the Americas

Thousands of miles away, the Americas offer similar clues in ancient art that humans witnessed Pleistocene megafauna now long gone. A recent spectacular find comes from the Serranía de la Lindosa rock shelters in the Colombian Amazon. There, an 8-mile-long expanse of cliff paintings has been dubbed the "Sistine Chapel of the ancients," preserving tens of thousands of red ochre drawings made toward the end of the Ice Age [12][13]. The artwork covers a huge menagerie of animals, from small species like deer, tapirs, monkeys, bats, turtles, and serpents to unmistakable Ice Age giants [13]. Amazonian hunters vividly depicted now-extinct creatures: mastodons (elephant relatives that disappeared at the end of the Pleistocene), palaeolama (an extinct camelid), horses, giant ground sloths, and other megabeasts of the late Pleistocene [12][14]. The paintings even show humans alongside or hunting these creatures, indicating direct interaction [12][14].

∐Image 12.

Notably, some figures in the Lindosa murals appear to represent large armored giant armadillos. Researchers have pointed out at least one petroglyph that clearly resembles a glyptodont — an extinct giant armadillo with a domed, armored shell the size of a small car [14].

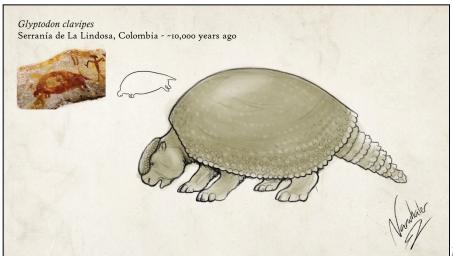


Image 13.

These Ice Age herbivores would have been a remarkable sight, and ancient Amazonian artists seemingly captured their form. While still under study, such depictions suggest glyptodonts were among the fauna observed by early inhabitants of South America. This would not be surprising, as mainstream paleontology recognizes that glyptodonts roamed South America and even parts of North America at one point in the past. Fossils of Glyptotherium (a glyptodont genus) have been found as far north as Arizona, Texas, and Florida, indicating giant armored beasts once ranged well beyond their modern armadillo cousins' habitats [16].

In Arizona, for example, the "shelled remains of a glyptodon" have been unearthed from Ice Age sediments [16]. If ancient rock art in the Americas indeed portrays glyptodonts, it reinforces that humans coexisted with these creatures and memorialized them in art before glyptodonts went extinct at the end of the Ice Age.

Another amazing confirmation of this possible rafting trek across the ocean to Americas is the fact we found early African marsupial opossum fossils in the Fayum Basin of Egypt during 1981–1982. These belonged to a didelphid genus, Peratherium africanus, Didelphidae is the only family within the marsupial order Didelphimorphia. This family encompasses the opossums of the Americas, including the well–known Virginia opossum (Didelphis virginiana). Opossums are characterized by their polyprotodont dentition, a feature distinguishing them from diprotodont marsupials.

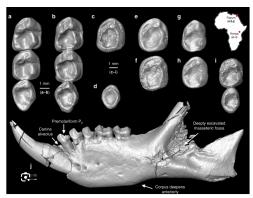


Image 14.

Ocean Crossing - Rafting the Atlantic (~500-700 AF):

From the Atlantic coast of Africa (Morocco or Senegal), they could raft across to South America. The post-Flood environment offered abundant log mats [6]. The crossing is ~3,000 km, aided by the westward-flowing North Equatorial Current [2]. Raft survival for several months is plausible if vegetation and rainwater were available.

The probability of at least one successful crossing in a 200-year window is high. Even with a 10% per-attempt success rate, multiple attempts over centuries yield >65% likelihood of success.

Human-Mediated Dispersal Hypothesis:

Humans could also have transported smaller armadillo-kind individuals intentionally or accidentally [8]. Fossil evidence from Argentina shows cut marks on glyptodont bones, indicating human interaction [9].

Spread and Speciation in the Americas (700–1500 AF):

Upon arrival (~700 AF), the armadillo kind diversified into glyptodonts, pampatheres, and smaller armadillos. This rapid speciation fits creationist models of post-Flood diversification [7]. Fossils confirm glyptodont presence across South America and into parts of North America before the end of the Ice Age.

Ghost Lineage Consideration:

In evolutionary paleontology, xenarthrans have no known fossil ancestors in the Northern Hemisphere despite molecular evidence suggesting earlier divergence [3,4]. The creation model explains this as a real absence — they appeared suddenly in South America after the Flood.

Travel Time Summary:

Ararat to African coast in ~500 years, ocean crossing in <1 year (waiting for a raft opportunity), and full spread in South America within a few centuries. Total: well under 1500 years.

Discussion

The simulation demonstrates that, under a young-earth timeline, the migration of specialized creatures to far-flung continents is achievable with natural mechanisms within the Biblical timeline. I combined factors of low sea level, climatic drive, rapid reproduction, rafting, and possible human involvement to address what are often seen as biogeographical riddles.

Rejection of secular dates and timeline. Most of the dates obtained in the secular model are based on uniformitarian assumptions calibrated to the idea using radiometric dating. Take Carbon 14 dating for example. Not only do we have experimental data showing that this method is extremely unreliable – under 60% [17, 18], but the logical question needs to be asked; "Assuming the Flood did occur, little if any C-14 may have existed before then. This would give anything older than the Flood a false appearance of great age." Asked by James Perloff in 1999. Clearly this factor needs to be taken as a consideration since our model predicts a catastrophic global ice age brought on by volcanism after the flood. Other radiometric dating methods used are also full of assumptions and also highly discordant when compared to one another. For example in the study titled HOW OFTEN DO RADIOISOTOPE AGES AGREE? [19], we see there is a mere 53% concordance amount when compared to seven different dating methods.

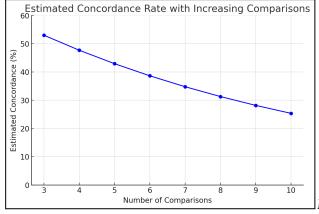
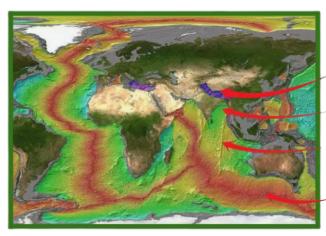

HOW OFTEN DO RADIOISOTOPE AGES AGREE? A PRELIMINARY STUDY OF 29,000 RADIOISOTOPE AGES IN THE USGS NATIONAL GEOCHRONOLOGICAL DATABASE

Table 1. The distribution of concordance scores for each	n method, as well as for the whole database	. Also includes the average score and the percentage of
concordant records.		

	Pb-Pb	Rb-Sr	235U_ 207Pb	238U_ 206РЬ	232Th-208Pb	K-Ar	FT	All Methods
Score = 0	708	138	68	55	56	43	108	1135
0 < Score < 0.50	119	84	53	47	41	13	27	638
0.50 ≤ Score < 1	76	73	47	38	37	14	19	509
Score = 1	1228	797	330	347	471	80	150	2593
Total Count	2131	1092	498	487	605	150	304	4875
Average Score	0.62	0.80	0.76	0.80	0.84	0.62	0.56	0.64
% Concordant (Score = 1)	58%	73%	66%	71%	78%	53%	49%	53%

Image 15.


A concordance rate of approximately 50% across radiometric methods indicates substantial unreliability for purposes of establishing consistent chronological frameworks, as such accuracy offers little predictive value. Moreover, comparison of isochron dating techniques revealed even lower agreement: when ten methods were tested against one another, concordance fell to 25%. This high level of discordance suggests that current radiometric approaches, at least in the dataset examined, lack sufficient consistency to function as robust chronological indicators.

lmage 16.

A central limitation of radiometric dating methods lies in the assumption that all daughter isotopes present in a sample were produced solely through the decay of the parent isotope. However, multiple independent laboratory studies have reported evidence that challenges this assumption [20,21].

Potassium—argon (K—Ar) dating is often cited as less assumption-dependent, since molten lava is understood to release pre-existing argon gas during solidification due to its inert, non-bonding properties. In this model, the isotopic "clock" is considered to start at zero upon crystallization, with subsequent argon accumulation attributed exclusively to the decay of ^40K. When K—Ar dating has been applied to lava flows of historically known ages, the resulting dates have been inconsistent with an evolutionary deep-time framework and instead align more closely with a young–earth chronology for seafloor formation [22].

4,545 years old lava dates 500 million

3,453 year old lava dates 389 million

1,727 year old lava dates 190 million

200 year old lava dates 22 million

Relying on radiometric dating of rocks to determine the age of living organisms is somewhat like estimating the age of a manuscript by analyzing the stone of the library in which it was stored, even when you have the ink and handwriting available for direct examination. While the building material may offer some contextual information, the most accurate insights come from the text itself. In the same way, if we possess the DNA of an organism—its direct biological record—this provides a far more immediate and precise measure of its history than the indirect inference drawn from surrounding geological material that are riddled with assumptions.

Young-earth creation (YEC) researchers emphasize the use of empirical pedigree studies, which track genetic change across many generations, rather than relying on phylogenetic models that presuppose evolutionary timescales. For example, a multigenerational study of the wild chicken (*Gallus gallus*) spanning over 50 generations reported mutation rates consistent with those observed in other taxa, including humans, reptiles, birds, plants, and aquatic species [23]. These empirically derived rates correspond to a compressed timescale that aligns with a biblical chronology and diverges substantially from estimates generated under evolutionary assumptions.

Chicken study reveals evolution can happen much faster than thought

By studying individual chickens that were part of a long-term 50 generation pedigree, the scientists.. found **two mutations** that had occurred in the mitochondrial genomes **of the birds in only 50 years.**

For a **long time scientists** have **believed** that the **rate of change** in the **mitochondrial genome** was **never faster** than about 2% per million years.

Previously, estimates put the rate of change in a mitochondrial genome at about 2%

Previously, estimates put the rate of change in a mitochondrial genome at about 2% per million years. At this pace, we should not have been able to spot a single mutation in just 50 years, but in fact we spotted two.'

The identification of these mutations shows that the rate of evolution in this pedigree is in fact 15 times faster.

Our study shows that evolution can move much faster in the short term than we had believed from fossil-based estimates.
Professor Greger Larson

Image 17.

We also find chicken remains in the Indus Valley (northern South Asia), and in other places in the Middle East, from sites like the Hellenistic southern Levan and Syria. As expected from the Biblical model which states these fowl would have been on Noah's ark and migrated to their present day locations. Their genomes show us they are young, and when compared to the fossil record age based on radiometric dating they do not agree at all. As the image above confirms "Our study shows that evolution can move much faster in the short term than we had believed **from fossil-based estimates**".

Comparison with Conventional Models:

In standard evolutionary biogeography, Australia's fauna is explained by long isolation after separation from Gondwana ~80 million years ago, while South America's Pleistocene megafauna are thought to have evolved indigenously and later mixed with North American species during the Great American Interchange. These scenarios rely on vicariance (geographical separation of a population). Yet even in conventional literature, many cases require dispersal across water, such as lemurs to Madagascar, Caviomorph rodents (e.g., capybaras, porcupines) believed to have rafted from Africa to South America, Tenrecs, thought to have rafted from Africa to Madagascar, similar to lemurs. Nesomyid rodents, African origin, rafting to Madagascar. Hippopotamuses, also rafted from Africa to Madagascar. Elephant shrews, some Afro-Malagasy distribution patterns suggest ancient dispersal events and of course monkeys to South America via rafting [2] including many ratites (flightless bird species).

My model uses the same dispersal mechanisms but in a compressed timeframe following a global cataclysm.

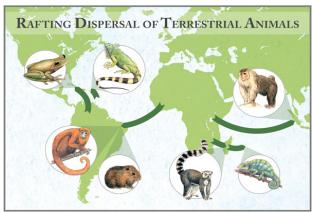


Image 18.

Population and Genetic Considerations:

Starting from two individuals per "kind" might seem limiting for genetic diversity, but creationist genetics posits high initial heterozygosity in Ark kinds [7]. This allows rapid diversification into multiple species in just hundreds of generations, driven by environmental selection and allele sorting. Short generation times in marsupials and armadillos make significant variation in under a millennium realistic.

Climate and Ecology Feedback:

The post-Flood Ice Age encouraged southward/eastward/westward migration while discouraging northern expansion [5]. This explains why kangaroos and koalas moved toward Australasia and why armadillo kinds avoided colder Eurasian routes in favor of Africa and the Atlantic crossing.

Addressing Skeptical Challenges:

The absence of kangaroo fossils en route to Australia or armadillo fossils in Africa/Europe is explained by the rarity of fossilization during transient migration, competition in non-final habitats, and possible human predation. As for rafting feasibility, documented modern examples show animals surviving long ocean drifts [2,6]. The post-Flood world's abundant debris mats would have made such events far more common than today.

Statistical "Probability Factory":

Even rare events become probable given multiple trials over centuries. A stochastic simulation with conservative spread rates (5 km/year) and low raft success probabilities still produces arrival in Australia and the Americas within the 1,000–1,500-year Ice Age window. Modern invasive species such as red foxes in Australia show far higher spread rates [7].

Human/Dinosaur/Therapsid Evidence

We also have evidence that humans saw dinosaurs and even dicynodont, an extinct clade of non-mammalian tusked herbivore therapsid that supposedly lived **before** dinosaurs. In an article titled: **Cave art discovery depicts an animal that went extinct 280-million-years ago, baffling scientists** by Eric Ralls, we read; "If the cave art painting really captures a dicynodont, it predates formal paleontology. Western science first named a species in 1845, yet the Horned Serpent panel was finished no later than 1835. Benoit and colleagues photographed the panel under varying light, traced outlines digitally, and matched them with museum specimens. The correlation, they argue, is too tight to be chance. Their work joins a handful of cases worldwide – China, Australia, North America – where Indigenous art may double as the earliest depiction of extinct animals." (Images 19 & 20 below)

This does not leave too much room for critics to argue. We have physical observable evidence that humans depicted seeing these creatures while hunting and drew them next to other living creatures in great detail.

What could have ended their existence?

lmage 21.

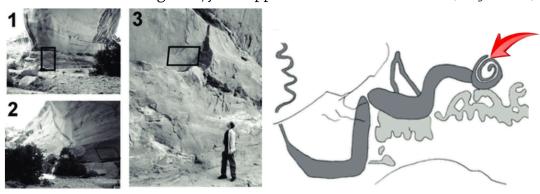

Kachina Bridge petroglyph (Utah, USA)

Image 22.

Claim: The carving shows a sauropod dinosaur (long neck, long tail, four legs).

• Critics: They say it's either a composite of overlapping petroglyphs (snakes, humans, abstract shapes) or a natural mineral stains that, when viewed together, just happen to look like a dinosaur. (*Image 23 & 24*)

• Rebuttal: The mineral stain and overlaying of image hypothesis fails in a few ways. One, the image itself clearly shows the head does not look like that spiral image on the above right depicted by critics. As you can see, the head makes a clear dinosaur shaped head and has an eye (spiral above right).

Your own eyes do not lie to you, what the critics depict to you as a stain is far from it, but there is another aspect to this that 100% refutes this pathetic rescue device easily and for good. Look at the next image below real close and see if you notice it.

Image 25.

Notice that? There are two dinosaurs pecked into the rock, visible from up close and something that can be sketched, so clearly not a stain.

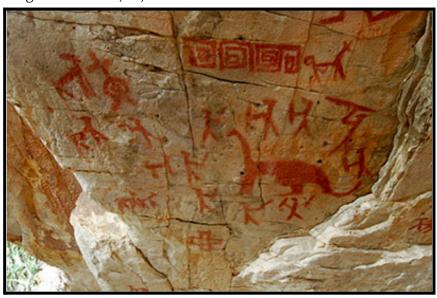


Image 26.

 Alternative view: Interpreted as strong evidence that Native Americans saw sauropods.

Numerous examples of such depictions can be found across the world. This fact alone should give any skeptic pause, since the creatures represented have no counterparts among living animals today, yet paleontology confirms their existence in the past. The most reasonable conclusion is that ancient people were recording what they actually saw, rather than imagining such creatures out of nothing.

Image set below 27, 28, 29 30 & 31.

Gobeki Tepe

Another great piece of evidence that the Middle East was the epicenter of diversity for animals is Göbekli Tippe, which shows many non-indigenous animals in the region depicted on the pillars. We find Geese, crocodiles, snakes, aurochs, armadillos, lions, and even wild boars (*Burns K. 2017 In the TV episode "Return to Göbekli Tepe"*). Only 5–10% has been unearthed, the more they discover the more it will confirm this idea. This corroborates Noah's flood story as well and we even read about this in the Bible.

The Noah's Ark story describes the creation of an altar, which could easily refer to the stone structures of Gobekli Tepe. Genesis 8:20: "Then Noah built an **altar** to the LORD and took some of every clean animal and some of every clean bird and **offered burnt offerings on the altar**." Excavations have uncovered many animal bones, most of which show signs of: Butchering, Burning & Tool marks indicative of sacrifice (Joris Peters 1998 – 2000). Smithsonian Magazine reports that Joris Peters ... has often found cut marks and splintered edges on [animal bones]—signs that the animals... were butchered or sacrificed.

Conclusion

I have outlined a comprehensive scenario for the post-Flood migrations of koalas, kangaroos, and glyptodonts that addresses both geographic and temporal challenges. A pair of each kind disembarked from the Ark in the Middle East around 3298 BC. Within about a millennium, their descendants had reached Australia and the Americas.

Key enablers were:

- Ice Age geography land bridges open for centuries before being submerged.
- Abundant flood debris acting as natural rafts across ocean gaps.
- Rapid reproduction and adaptability enabling quick range expansion and speciation/hybridization.
- Human interaction possibly aiding or redirecting migration paths.

The model's estimated travel times (~500–1,000 years) fit comfortably in the available post-Flood window. The resulting isolation of Australia and the Americas explains their unique faunas today. Indian rock art of kangaroos [1], koala diet flexibility [8], and human–glyptodont interaction [9] are all consistent with this rapid post-Flood dispersal model.

This conceptual simulation shows that observed species distributions do not require deep time; they can be explained in a biblically-consistent framework using known ecological and geological processes.

Human-Megafauna Contemporaneity and Young-Earth Interpretation

Both the Indian "kangaroo" paintings and the American megafauna paintings underscore that early humans lived alongside animals now restricted to distant lands or extinct. In secular terms, these artworks date to the Late Pleistocene, implying that humans on different continents were familiar with these fauna [3][4]. In fact, apart from art, there is concrete archaeological evidence that humans interacted with Pleistocene megafauna. For example, at the Taima–Taima and Muaco sites in Venezuela, scientists discovered glyptodont bones with telltale damage: multiple glyptodont skulls showed clusters of broken bone in the thin frontoparietal region, consistent with humans delivering lethal blows to hunt them [15]. One even found an inverted glyptodont carapace (shell) at Taima–Taima – interpreted as the

result of humans flipping the heavy creature onto its back to butcher it [15]. Such findings are "novel evidence of human—glyptodont interactions" in northern South America [15], complementing the southern South American kill sites and now the pictographs of these animals. In the case of India's rock art, while no direct kill site is known for kangaroos in Asia, the mere existence of their images strongly suggests people encountered living kangaroos on the Indian subcontinent in the past [11][1]. From a young–earth creationist

standpoint, these discoveries are not surprising but rather expected. The biblical timeline places mankind and all land animals contemporaneously from the beginning, and especially after the Flood when they dispersed across the Earth. Creationists contend that the Ice Age followed the Flood, during which humans and animals

migrated and repopulated various regions. In this view, Pleistocene "dates" correspond to post-Flood decades and centuries, not tens of thousands of years ago. Thus, ancient artists drawing kangaroos and glyptodonts were simply documenting real creatures they saw in a post-Flood world. The kangaroo paintings in India fit YEC models of animal dispersal: marsupials spreading from the Ark's landing site could travel through the Middle East into India and beyond, aided by land bridges when sea levels were lower [1]. Those kangaroos did not stay in India long-term – possibly due to predation or climate shifts – but they persisted long enough to be observed by people who memorialized them in cave art [12]. Likewise, the coexistence of humans with "giant armadillos" (glyptodonts) and other megafauna in the Americas aligns with a scenario of rapid post-Flood migration into the New World. Creationists note that if humans reached South America quickly after Babel, they would have encountered creatures like glyptodonts, giant ground sloths, mastodons, etc., all living at the same time – consistent with the rock art and butchery evidence (but compressing the timeline to mere centuries after the Flood). In the YEC framework, the geologic period labels (e.g. "Late Pleistocene") are retained for context, but the absolute ages are dramatically reduced. Thus, ignoring the evolutionary timeline, the evidence from cave art, fossils, Gobekli Tepe - depictions of diverse animals, some never known to be in Turkey can be best understood as humans and these animals living together only a few thousand years ago just as the Bible describes.

If this perspective is new to you, or if you'd like to see how the evidence comes together across many different fields, I've put together a series of studies that build on the same foundation. For example, I've shown through DNA barcoding that all hominids—humans, Neanderthals, Denisovans, and Heidelbergensis—belong to a single human family tree after a recent global bottleneck ([24] *One Species, Many Names*, 2025). I've also examined how "kinds" work in creation: from tracing the ancestry of the cat kind ([25]*When Barcodes Blur*, 2025) to investigating nightshade plants and their surprisingly low mutation rates ([26] *The Mystery of the Missing Mutations*, 2025).

On the human side, I've explored population dynamics after the Flood and during Babel ([27] *Post-Flood Populations*, 2025), as well as how linguistics confirms the sudden appearance of language families at Babel ([28] *Human Language Origins*, 2025) and how God designed man for speech with testable predictions ([29] *From the Beginning*, 2025). Finally, for those curious about the bigger picture, I've written on why evolutionary theory consistently fails in its predictions—and how the biblical creation model offers a better, testable framework ([30] *Retrofits and Revisions*, 2025).

All of these studies are freely available, and together they paint a consistent picture: whether you look at genetics, linguistics, plants, animals, or population history, the evidence fits hand-in-glove with the Bible's record of creation, the Flood, and Babel.

References

- 1. Robinson, P. (2020). *Kangaroos in India?* Creation, 42(3), 36–37.
- 2. Smithsonian Magazine. (2020). *Monkeys rafted across the Atlantic twice*. Retrieved from https://www.smithsonianmag.com/science-nature/monkeys-rafted-across-atlantic-twice-180974568/
- 3. Bechly, G. (2022, December 16). *The abrupt origin of Xenarthrans (Fossil Friday: Glyptodon)*. Evolution News & Science Today. Retrieved from https://evolutionnews.org/2022/12/the-abrupt-origin-of-xenarthrans-fossil-friday-glyptodon/
- 4. Gaudin, T. J., & Croft, D. A. (2015). Paleogene xenarthra and the evolution of South American mammals. *Journal of Mammalogy*, 96(4), 622–634. https://doi.org/10.1093/jmammal/gyv073
- 5. Oard, M. J. (2004). Frozen in Time: The Woolly Mammoth, the Ice Age, and the Biblical Key to Their Secrets. Green Forest, AR: Master Books.

- 6. Oard, M. J. (2020). Post-Flood log mats and animal migration. *Journal of Creation*, 34(1), 3–5. Retrieved from https://creation.com/post-flood-log-mats
- 7. Robinson, P. (2018). The red blanket Australia's red fox and post-Flood migration. *Creation*, 40(3), 12–13.
- 8. Wieland, C. (1994). Cuddly cold-cures counter critics. *Journal of Creation*, 8(2), 126–127.
- 9. Hebert, J. (2024). Humans butchered giant "armadillos." Creation Science Update. Institute for Creation Research. Retrieved from https://www.icr.org/article/13716/
- Del Papa, M., Martínez, G. A., Politis, G., & Santos, R. V. (2024). Anthropic cut marks in extinct megafauna bones from the Late Pleistocene of the Argentine Pampas. PLOS ONE, 19(7), e0304956. https://doi.org/10.1371/journal.pone.0304956
- 11. Chandrasekaran, A. (2019). "Did kangaroos ever live in India? A new discovery has some archaeologists hopping with excitement." Scroll.in (May 13, 2019).
- 12. Alberge, D. (2020). "Sistine Chapel of the ancients' rock art discovered in remote Amazon forest." The Guardian (Nov 29, 2020).
- 13. Geggel, L. (2020). "Sprawling 8-mile-long 'canvas' of ice age beasts discovered hidden in Amazon rainforest." Live Science (Dec 1, 2020).
- 14. Sanciusart (2021). "Inspiring cave art Glyptodon." DeviantArt (Dec 4, 2021).
- 15. Rincón, A. D. et al. (2022). "Damaged glyptodontid skulls from Late Pleistocene sites of northwestern Venezuela: evidence of hunting by humans?" Swiss Journal of Palaeontology 141:11 (2022).
- 16. Bradshaw Foundation (2014). "Land of the Sabre-tooth." Bradshaw Foundation News (Nov 27, 2014).
- 17. Report on Stage 3 of the International Collaborative Program by Aitchison, I. C., Scott, E. M., Harkness, D. D., Baxter, M. S., & Cook, G. Thirty-eight laboratories took part in this stage with most Radiocarbon producing 8 C14 dates from 3 sets of duplicate material (es, wood, shell and peat) and 2 single samples of wood of known ages 190 yr BP apart. In total, 23 out of the 38 laboratories in this stage of the study, FAILED to meet these 3 basic criteria for an adequate performance in the production of 14C dates.
- 18. 2019 A blind comparison of radiocarbon labs by Ward Brent & Clague, John Duplicate macrofossil and twig samples were sent covertly to 7 different labs. Lab results varied significantly. Accuracy: Only 50%-60% of results overlapped within each lab's stated + error; Discrepancies up to 15% in age.

- 19. Beachy, M.D., B.R. Kinard, and P.A. Garner. 2023. How often do radioisotope ages agree? A preliminary study of 29,000 radioisotope ages in the USGS National Geochronological Data-base.
- 20. Proton-21 Electrodynamics Laboratory
 https://www.academia.edu/7746113/Proton 21 Electrodynamics Laboratory
- 21. Safire Project https://www.safireproject.com/
- Nailor, M. (2025) The Illusion of Deep Time: Systematic Discordant Radiometric Ages and the Myth of an Ancient Ocean Floor https://doi.org/10.5281/zenodo.16956858 Matt Nailor & Donny Budinski
- 23. Mitogenomic analysis of a 50-generation chicken pedigree reveals a rapid rate of mitochondrial evolution and evidence for paternal mtDNA inheritance
- Nailor, M. (2025). One Species, Many Names: Mitochondrial Evidence Unites Humans, Neanderthals, Denisovans, and Heidelbergensis https://doi.org/10.5281/zenodo.16936057
- 25. Nailor, M. (2025) When Barcodes Blur: Mitochondrial DNA Barcoding of Felidae Indicates Two Ancestral Lineages? https://doi.org/10.5281/zenodo.16937646 Matt Nailor & Donny Budinski.
- Nailor, M. (2025) The Mystery of the Missing Mutations in Plant DNA: Evidence of Recent Bottlenecks in Nightshades https://doi.org/10.5281/zenodo.16938026 Matt Nailor & Donny Budinski.
- Nailor, M. (2025) Post-Flood Populations: Haplogroup formation and Fixation Dynamics in from Noah to Babel Dispersion https://doi.org/10.5281/zenodo.16938125 Matt Nailor & Donny Budinski.
- 28. Nailor, M. (2025) Human Language Origins: A Population and Constraint-Based Analysis https://doi.org/10.5281/zenodo.16938355 Matt Nailor, Donny Budinski.
- Nailor, M. (2025) From the Beginning: A Testable Creation Model for Speech-Related Design https://doi.org/DOI:10.5281/zenodo.16938274 Matt Nailor, Donny Budinski.
- 30. Nailor, M. (2025). Retrofits and revisions: How evolutionary theory fails the test of predictive science. https://doi.org/10.5281/zenodo.17068077